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Abstract

The influence of thermocapillarity on the flow and heat transfer in a thin liquid film on a horizontal stretching sheet

is analysed. The time-dependent governing boundary layer equations for momentum and thermal energy are reduced to

a set of coupled ordinary differential equations by means of an exact similarity transformation. The resulting three-

parameter problem is solved numerically for some representative values of an unsteadiness parameter S and a thermo-
capillarity number M for Prandtl numbers from 0.001 to 100. The thermocapillary surface forces drag the liquid film in

the same direction as the stretching sheet and a local velocity minimum occurs inside the film. The surface velocity, the

film thickness, and the Nusselt number at the sheet increase with M for PrK 10. For higher Prandtl numbers, the

thermal boundary layer is confined to the lower part of the liquid film and the temperature at the free surface remains

equal to the slit temperature and the thermocapillary forces vanish.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A class of flow problems with obvious relevance to

polymer extrusion is the flow induced by the stretching

motion of a flat elastic sheet. In a melt-spinning process,

the extrudate from the die is generally drawn and si-

multaneously stretched into a filament or sheet, which is

thereafter solidified through rapid quenching or gradual

cooling by direct contact with water or chilled metal

rolls. In fact, stretching imports a unidirectional orien-

tation to the extrudate, thereby improving its mechani-

cal properties and the quality of the final product greatly

depends on the rate of cooling. Crane [1] was the first

who studied the motion set up in the ambient fluid due

to a linearly stretching surface. Several authors, see e.g.

the references cited in [2], have subsequently explored

various aspects of the accompanying heat transfer oc-

curring in the infinite fluid medium surrounding the

stretching sheet. The hydrodynamics of a finite fluid

medium, i.e. a thin liquid film, on a stretching sheet was

first considered by Wang [3] who by means of a simi-

larity transformation reduced the unsteady Navier–

Stokes equations to a non-linear ordinary differential

equation. The accompanying heat transfer problem was

solved more recently by Andersson et al. [2]. In these

studies the film surface was planar and free of any

stresses.

The purpose of the present paper is to explore how

the hydrodynamics and heat transfer in a liquid film on

an unsteady stretching surface are affected by thermo-

capillarity, i.e. thermally induced surface-tension gradi-

ents along the horizontal interface between the passive

gas and the liquid film. These surface-tension gradients

generate an interfacial flow that, through viscous drag,

either oppose or support the shear-driven motion due to

the stretching sheet. The presence of thermocapillarity
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couples the hydrodynamic and the thermal boundary

layer problems. It will, nevertheless, be demonstrated

that exact similarity can be achieved also in the presence

of thermocapillarity. Accurate numerical solutions will

be provided for the resulting three-parameter problem

covering the range of Prandtl numbers from 0.001 to

100. Typical values of the dimensionless unsteadiness

parameter introduced in Ref. [3] and a new thermo-

capillarity parameter will be considered.

2. Mathematical formulation

2.1. Governing equations and boundary conditions

Let us first consider a thin elastic sheet that emerges

from a narrow slit at the origin of a Cartesian coordi-

nate system, as shown schematically in Fig. 1. The

continuous sheet at y ¼ 0 is parallel with the x-axis and
moves in its own plane with the velocity

U ¼ bx=ð1� atÞ ð1Þ
where b and a are both positive constants with dimen-
sion time�1. Similarly, the surface temperature Ts of the
stretching sheet varies with the distance x form the slit as

Ts ¼ To �
1

2
Tref � Rexð1� atÞ�1=2

¼ To � Tref ½bx2=2m�ð1� atÞ�3=2 ð2Þ

where

Rex ¼ Ux=m ¼ bx2=mð1� atÞ ð3Þ

is a local Reynolds number based on the sheet velocity

U . Here, To denotes the temperature at the slit and Tref
can be taken as a constant reference temperature

such that 06 Tref 6 To. The expression (1) for the sheet
velocity Uðx; tÞ reflects that the elastic sheet, which is
fixed at the origin, is stretched by applying a force in

the positive x-direction. The effective stretching rate
b=ð1� atÞ increases with time since a > 0. Similarly, the
expression (2) for the temperature Tsðx; tÞ of the sheet
represents a situation in which the sheet temperature

decreases from To at the slit in proportion to x2 and such
that the amount of temperature reduction along the

sheet increases with time. The particular forms of the

above expressions for Uðx; tÞ and Tsðx; tÞ are the same as
in [2,3] and were chosen in order to be able to devise

a new similarity transformation which transforms the

Nomenclature

b stretching rate [s�1]

Cf local skin friction coefficient, Eq. (26)

cp specific heat [J kg�1 K�1]

f dimensionless stream function, Eq. (13)

h film thickness [m]

M thermocapillarity number, Eq. (24)

Ma Marangoni number, Eq. (25)

Nux local Nusselt number, Eq. (27)

Pr Prandtl number, m=j
q heat flux, �qcpjoT=oy [J s�1 m�2]

Rex local Reynolds number, Ux=m
S unsteadiness parameter, a=b
t time [s]

T temperature [K]

U sheet velocity [m s�1]

u horizontal velocity component [m s�1]

v vertical velocity component [m s�1]

x horizontal coordinate [m]

y vertical coordinate [m]

Greek symbols

a constant [s�1]

b dimensionless film thickness

c constant [K�1]

g similarity variable, Eq. (15)

h dimensionless temperature, Eq. (14)

j thermal diffusivity [m2 s�1]

l dynamic viscosity [kgm�1 s�1]

m kinematic viscosity [m2 s�1]

q density [kgm�3]

r surface tension [kg s�2]

s shear stress, lou=oy [kgm�1 s�2]

w stream function [m2 s�1]

Subscripts

i isothermal sheet

o origin

ref reference value

s sheet

x local value

Fig. 1. Schematicof a liquidfilmflowona stretchingelastic sheet.
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governing partial differential equations for heat and

momentum into a set of ordinary differential equations,

thereby facilitating the exploration of the effects of the

controlling parameters.

A thin liquid film of uniform thickness hðtÞ lies on the
horizontal sheet (cf. Fig. 1). The fluid motion within the

film is primarily caused by the stretching of the elastic

sheet. Buoyancy is neglected since the liquid layer is

relatively thin, but not so thin that intermolecular forces

come into play. The volatility of the Newtonian liquid is

low and evaporation from the surface can be neglected.

The fluid properties are assumed to be constant, except

the surface tension which varies linearly with tempera-

ture:

r ¼ ro½1� cðT � ToÞ� ð4Þ

This is a commonly made assumption, e.g. [4,5]. For

most liquids the surface tension decreases with tem-

perature, i.e. c is a positive fluid property. The ambient
gas does not exert any interfacial shear on the liquid film

and there is no direct effect of the surface tension since

the interface remains planar. However, the variation of

r along the interface, i.e.

or
ox

¼ or
oT

� oT
ox

ð5Þ

may generate interfacial motion, which is of primary

concern in the present study. The velocity and tempera-

ture fields in the thin liquid layer are governed by the

two-dimensional boundary layer equations for mass,

momentum and thermal energy:

ou
ox

þ ov
oy

¼ 0 ð6Þ

ou
ot

þ u
ou
ox

þ v
ou
oy

¼ m
o2u
oy2

ð7Þ

oT
ot

þ u
oT
ox

þ v
oT
oy

¼ j
o2T
oy2

ð8Þ

in which viscous dissipation of energy has been assumed

negligible. The pressure is constant in the surrounding

gas phase and the gravity force gives rise to a hydrostatic

pressure variation in the liquid film.

In order to justify the boundary layer approximation,

the length scale in the primary flow direction must be

significantly larger than the length scale in the cross-

stream direction. Now, if ðm=bÞ1=2 is a representative
measure of the film thickness, the scale ratio x=
ðm=bÞ1=2 	 1. It is readily seen that the local Reynolds

number in Eq. (3) initially equals the square of this scale

ratio. Thus, just as in aerodynamic boundary layer the-

ory, cross-stream diffusion of momentum and thermal

energy can only be neglected at high Reynolds numbers.

The associated boundary conditions are

u ¼ U ; v ¼ 0; T ¼ Ts at y ¼ 0 ð9Þ

lou=oy ¼ or=ox at y ¼ h ð10Þ

oT=oy ¼ 0 at y ¼ h ð11Þ

v ¼ dh=dt at y ¼ h ð12Þ

Here, it is implicitly assumed that the mathematical

problem is defined only for xP 0. It is moreover as-

sumed that the surface of the planar liquid film is

smooth and free of surface waves. The influence of in-

terfacial shear due to the quiescent atmosphere is neg-

ligible and Eq. (10) states a balance between the viscous

shear stress s ¼ lou=oy and the net surface tension. The
heat flux q ¼ �qcpjoT=oy vanishes at the adiabatic free
surface, cf. Eq. (11), whereas Eq. (12) imposes a kine-

matic constraint on the fluid motion.

2.2. Similarity transformation

The special case of an isothermal sheet with Ts ¼ To,
i.e. Tref ¼ 0, was treated separately in the appendix of
Ref. [2]. In that case the trivial solution T ðx; y; tÞ ¼ To
applies for all Prandtl numbers. Although surface ten-

sion effects were not taken into consideration in Ref. [2],

it is intuitively clear that this uniform-temperature so-

lution excludes any thermocapillary fluid motion. Let us

now exclude the case Tref ¼ 0 and introduce new di-

mensionless variables f and h and the similarity variable
g:

w ¼ fmbð1� atÞ�1g1=2 � x � f ðgÞ ð13Þ

T ¼ To � Tref ½bx2=2m�ð1� atÞ�3=2hðgÞ ð14Þ

g ¼ ðb=mÞ1=2ð1� atÞ�1=2y ð15Þ

in which wðx; y; tÞ is the physical stream function which

automatically assures mass conservation (6). The ve-

locity components are readily obtained as:

u ¼ ow=oy ¼ bxð1� atÞ�1f 0ðgÞ ð16Þ

v ¼ �ow=ox ¼ �fmbð1� atÞ�1g1=2f ðgÞ ð17Þ

The mathematical problem defined in Eqs. (6)–(12)

transforms exactly into a set of ordinary differential

equations and their associated boundary conditions:

S f 0
�

þ g
2
f 00
�
þ ðf 0Þ2 � f 00f ¼ f 000 ð18Þ

Pr½ðS=2Þð3h þ gh0Þ þ 2hf 0 � h0f � ¼ h00 ð19Þ

f 0ð0Þ ¼ 1; f ð0Þ ¼ 0; hð0Þ ¼ 1 ð20Þ

f 00ðbÞ ¼ M � hðbÞ ð21Þ

f ðbÞ ¼ Sb=2 ð22Þ

h0ðbÞ ¼ 0 ð23Þ

where a prime denotes differentiation with respect to

g. Here Eq. (21) represents the only and yet crucial
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distinction from the earlier analysis of the same problem

in the absence of thermocapillarity [2].

The three dimensionless parameters, which appear

explicitly in the transformed problem, are the unsteadi-

ness parameter S 
 a=b, the Prandtl number Pr ¼ m=j,
and the thermocapillarity number M defined as:

M 
 croTref
lðbmÞ1=2

ð24Þ

The latter parameter, which emerges naturally from the

similarity analysis, is closely related to the Marangoni

number. The Marangoni number is a frequently used

parameter in the analysis of thermocapillarity-driven

flows and involves a characteristic length scale. In the

present context the thickness of the liquid layer is of the

order ðm=bÞ1=2 and the Marangoni number based on this
scale becomes:

Ma 
 croTref
ffiffiffiffiffiffiffi
m=b

p
lj

¼ Pr �M ð25Þ

In the transformed problem, boundary conditions are

imposed at g ¼ 0 and g ¼ b, where b denotes the value
of the similarity variable g at the free surface. Thus Eq.
(15) gives b ¼ ðb=mÞ1=2ð1� atÞ�1=2h for y ¼ h where b is a
yet unknown constant which should be determined as an

integral part of the boundary-value problem. The kine-

matic constraint (12) at y ¼ hðtÞ thus transforms into the
free-surface condition (22) and the interfacial stress

balance (10) leads to (21) which serves to couple the

momentum boundary layer problem to the thermal

boundary layer problem. Of particular practical rele-

vance is the local skin friction coefficient

Cf 

2ss
qU 2

¼ �2f 00ð0Þ � Re�1=2x ð26Þ

and the local Nusselt number

Nux 
 � x
Tref

oT
oy

� �
y¼0

¼ 1
2
ð1� atÞ�1=2 � h0ð0Þ � Re3=2x ð27Þ

where Rex is the local Reynolds number defined in Eq.
(3). Thus, Cf decreases linearly with the distance from
the slit, whereas Nux increases as x3.

3. Numerical procedure

The non-linear differential equations (18) and (19)

subject to the boundary conditions (20)–(23) constitute a

two-point boundary-value problem, which was solved

by the method of adjoints [6]. The two ODEs (18) and

(19) were first formulated as a set of five first-order

equations. For a tentative value of b, this set subjected

to the three explicit initial conditions (20), the explicit

terminal condition (23) and the implicit terminal con-

dition (21) was solved by the method of adjoints. The

numerical solution did generally not satisfy the auxiliary

terminal condition (22), and the estimated value of b was
therefore systematically adjusted until Eq. (22) was

satisfied to within 10�4. For non-linear two-point

boundary-value problems, the method of adjoints in-

volves forward integration of the five ODEs and multi-

ple backward integrations of the five corresponding

adjoint equations, i.e. equations which are adjunct to

analytically determined variational equations. The iter-

ative process, as described in more detail in chapter 3 of

Roberts and Shipman [6], was terminated when Eqs.

(21) and (23) were satisfied to within 10�8.

4. Results and discussions

4.1. Absence of thermocapillarity (M ¼ 0)

The thickness hðtÞ of the thin liquid film has been

assumed to be uniform, although decreasing monoton-

ically with time. Therefore the only dynamic effect of

surface tension in the present problem stems from

thermocapillarity, i.e. thermally-induced variation of the

surface tension along the film surface. In the particular

case of temperature-independent surface tension, i.e.

c ¼ 0 in Eq. (4), thermocapillarity is absent ðM ¼ 0Þ and
the boundary condition (21) at the film surface simplifies

to f 00ðbÞ ¼ 0. In this case the momentum boundary layer
problem defined by the ODE (18) and its associated

boundary conditions (20)–(22) decouples from the

thermal problem. The hydrodynamic part of this prob-

lem was solved by Wang [3], whereas Andersson et al. [2]

solved the accompanying thermal problem. Let us

briefly recall their major findings.

For positive values of the unsteadiness parameter S,
Wang observed that solutions exist only for 06 S6 2.
Moreover, when S tended to zero the solution ap-

proached the analytical solution due to Crane [1] for an

infinitely thick layer of fluid, i.e. b ! 1. On the other
hand, the limiting solution as S ! 2:0 represents a liquid
film with infinitesimal thickness, i.e. b ! 0. Andersson

et al. [2] found that when the temperature Ts of the
stretching sheet decreases with the distance from the slit,

the temperature inside the film increased monotonically

from the elastic sheet to the free surface. At sufficiently

high Prandtl numbers, i.e. low thermal diffusivity, the

surface temperature remained practically equal to the

slit temperature To throughout the entire liquid film.

4.2. Effects of thermocapillarity (M > 0)

The velocity and temperature profiles for the pa-

rameter combination S ¼ 0:8 and Pr ¼ 0:1, as presented
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in Figs. 2 and 3, respectively, show that the thermo-

capillarity number M has a significant influence on the

variation of the velocity and the temperature in the film.

For all values of M , the dimensionless temperature h
decreases monotonically with the distance g from the

elastic sheet. This implies that the temperature T grad-
ually increases from Ts ð6 ToÞ at g ¼ 0 and towards the
free surface. Since hðbÞ > 0 the temperature at the free
surface is, however, below the slit temperature To. The
reduction of the surface temperature with x implies that
the surface tension r increases with the distance from the
slit, i.e. the net surface tension on an interfacial fluid

element is thus in the positive x-direction. Accordingly,
the fluid layer just below the free surface is dragged

along by the top layer due to viscous shear. This explains

the characteristic velocity profiles in Fig. 2, which ex-

hibit a local minimum inside the liquid film. In the

mathematical formulation of the problem, this phe-

nomenon is brought about by the interfacial boundary

condition (21). The dimensionless shear stress f 00ðbÞ in-
creases gradually with M until the reduction of hðbÞ
tends to partially outweigh further increase in M . For
M-values above 0.5, the interfacial shear stress is only
modestly affected by M , whereas the film is substantially
thickened.

The primary characteristics of the hydrodynamic

part of the problem, i.e. the dimensionless film thickness

b, the surface velocity f 0ðbÞ and the sheet shear stress
f 00ð0Þ, are presented in Figs. 4 and 5. These results are
obtained for Pr ¼ 0:1 and it should be recalled that the
influence of the Prandtl number on the hydrodynamics

is only indirect via the free-surface boundary condition

(21). It is readily observed from Figs. 4 and 5 that the

film thickness and the surface velocity increase with M
for all values of the unsteadiness parameter S. The
particular value So of S, above which no solutions could
be obtained, corresponds to an infinitely thin film

ðb ! 0Þ. In the absence of thermocapillarity effects (i.e.
M ¼ 0), Wang [3] found So ¼ 2:0 and the accompanying
surface velocity f 0ðbÞ ¼ 1. The present results show a

modest increase in So with M and, moreover, that the

surface velocity f 0ðbÞ exceeds unity. This excess velocity
can obviously be ascribed to the action of thermocapil-

lary forces. The variation with S of the velocity gradient
f 00ð0Þ at the stretching sheet in Fig. 5 shows essentially
the same trend in the presence of thermocapillarity as

reported by Wang [3] for M ¼ 0. For small values of S,
i.e. thick films, thermocapillarity exhibits a negligible

effect on the friction between the liquid and the elastic

sheet. Even for S ¼ 0:8 the slopes of the different ve-
locity profiles in Fig. 2 at g ¼ 0 are scarcely discernible.
When S is about unity, the magnitude of f 00ð0Þ appears
to decrease slightly in the presence of thermocapillarity,

obviously due to the thickening of the liquid layer with

M . However, the different curves in Fig. 5 inevitably
intersect at somewhat higher S-values since the upper
bound So, beyond which no solution exists, increases
with M .
The primary thermal characteristics are presented in

Fig. 6 over a wide range of Prandtl numbers and for

the same two representative values of the unsteadiness

parameter S as considered in [2]. In the absence of

thermocapillarity effects, Andersson et al. [2] argued that

at sufficiently high Prandtl numbers, i.e. PrJ 10, the

thermal boundary layer is confined within the liquid

film. Thus, h decreases monotonically from 1 to 0 across
this boundary layer and remains zero in the upper part

of the film. In the isothermal surface layer the temper-

ature equals the slit temperature To. In this high-Prandtl-
number regime, the local heat transfer rate �h0ð0Þ at the

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

M=0.0

M=0.1

M=0.5

M=1.0

Fig. 2. Similarity velocity profiles f 0ðgÞ for S ¼ 0:8 and

Pr ¼ 0:1 for different values of the thermocapillarity number M .
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1
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2.5

3
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M=0.0

M=0.1

M=0.5

M=1.0

Fig. 3. Similarity temperature profiles hðgÞ for S ¼ 0:8 and
Pr ¼ 0:1 for different values of the thermocapillarity number M .
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stretching sheet is controlled by the velocity in the im-

mediate vicinity of the sheet, the latter which is practi-

cally unaffected by thermocapillarity.

For Prandtl numbers of the order of unity and below,

on the other hand, the temperature gradients extend all

the way to the free surface and the surface temperature

hðbÞ attains a finite value below 1; see Fig. 6 and the
sample temperature profiles in Fig. 3 for Pr ¼ 0:1. It is
readily seen from Fig. 6 that thermocapillarity tends

to reduce hðbÞ for a given Prandtl number, obviously
due to the thickening of the liquid film caused by the

thermocapillarity forces. Andersson et al. [2] argued that

the observed reduction of the heat flux �h0ð0Þ with S in
the high-diffusivity (low Pr) limit is a result of the film
thickness b being a rapidly decaying function of S. Now,
since a striking effect of increasing thermocapillarity is

the thickening of the liquid film, cf. Fig. 4, the enhanced

heat flux for M ¼ 0:5 in Fig. 6 is also ascribed to the
thickening of the film.

5. Concluding remarks

So far it has been assumed that the reference tem-

perature Tref in Eq. (2) is positive, or more specifically
that 0 < Tref 6 To. Likewise, c in Eq. (4) was taken as a
positive constant. However, the similarity analysis is

equally valid if either Tref or c or both are negative.
Tref < 0 implies that the sheet temperature Ts increases
with the distance from the slit, whereas c < 0 represents
a liquid in which the surface tension r increases with
temperature. If either Tref or c is negative, the thermo-

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M=0.0

M=0.5

M=1.0

M=0.0

M=0.5

M=1.0

f ′(β)

f ′′(0)

Fig. 5. Free-surface velocity f 0ðbÞ and sheet shear stress �f 00ð0Þ
versus unsteadiness parameter S for Pr ¼ 0:1.
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30

M=1.0

M=0.5

M=0.0

Fig. 4. Film thickness b versus unsteadiness parameter S for Pr ¼ 0:1.
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Fig. 6. Dimensionless heat flux �h0ð0Þ at the sheet and di-
mensionless surface temperature hðbÞ versus Prandtl number
for M ¼ 0 (solid lines) and for M ¼ 0:5 (broken lines) for two
different S-values.
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capillarity number M defined in Eq. (24) becomes neg-

ative, too, and further computations are needed. On the

other hand, if both Tref < 0 and c < 0, M > 0 and the
numerical results presented in §4.2 still apply, although

the physical interpretations are different.

In this paper it has been demonstrated that the sim-

ilarity transformation devised by Andersson et al. [2] for

heat transfer in a liquid film on an unsteady stretching

surface in the absence of thermocapillary effects also

applies when thermally-induced variations of the surface

tension are taken into consideration. Numerical solu-

tions of the resulting ODEs reveal a number of impor-

tant phenomena. First of all, the thermally-induced

variation of the surface tension gives rise to a net force in

the direction of the stretching sheet. Thus, the shear-

driven motion of the fluid adjacent to the free surface

and in the vicinity of the stretching sheet results in a

local velocity minimum in the interior of the film. The

surface velocity may even exceed the sheet velocity in

some cases. The thermocapillarity influence also tends to

thicken the film and increase the rate of heat transfer

between the sheet and the film. At high Prandtl num-

bers, i.e. PrJ 10, the thermal boundary layer is confined

to the lower part of the liquid film whereas the tem-

perature in the isothermal surface layer remains equal to

the slit temperature To. The surface tension is therefore
constant and no thermocapillary effects are present at

high Pr.
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